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ADDENDUM 
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Abstract. We study by means of numerical simulqtion, the diffusive behaviour of test 
particles in a two-dimensional fluid, whose velocity field passes from periodic to chaotic 
motion. We show that there exists no relation between the diffusion coefficients and the 
degree of chaoticity of the Lagrangian motion. This is related to the intermittent character 
of the diffusive process; this behaviour, on a qualitative ground, may be interpreted in 
terms of intermittent maps. 

Recently we have analysed the properties of the motion of particles in a two-dimensional 
fluid [ 11. Especially we studied the relation of the Lagrangian chaoticity to the Eulerian 
properties of the flow. In this addendum we turn our attention to the diffusion properties 
of test particles plunged in the velocity field of [ 13. Indeed in many circumstances for 
the diffusion and mixing properties of a system the ‘convective’ diffusion, linked to 
Lagrangian features, is more important than the ‘molecular’ diffusion. 

Let us briefly review the model and the main results of [l]. Following a standard 
procedure in the study of weak turbulence, we take Navier-Stokes equations and, by 
Fourier transforming the stream function, we get a (infinite) system of ordinary 
differential equations, from which we select a suitable (finite) set [2]. We are left with 
the following dynamical system: 

3 = f R e ( Y )  r,f E R 5  ( l a )  

.i = U b ,  Y ( t ) )  X E  R 2  (1b) 

where the amplitudes of the Fourier series, 7, are the variables describing the Eulerian 
velocity field u ( x ,  t ) ,  Re is the Reynold’s number and x = (xl, x2) is the particle position. 
The velocity field is periodic in the two spatial dimensions with wavelength 27r. 
Equation ( l b )  may describe the behaviour both of a fluid particle and of a test particle, 
that is small enough not to disturb the velocity field but also big enough not to perform 
a Brownian motion. Let us remark that the incompressibility condition U = (a2+, -al+), 
makes ( l b )  a time-dependent Hamiltonian system for which the stream function + 
has the role of the Hamiltonian function. 

System ( l a )  shows the following behaviour: if Re < Re, = 22.8538 . . . there are 
stable fixed points which, for Re = Re,, lose their stability while, via Hopf bifurcation, 
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stable periodic orbits appear; these become unstable and bifurcate to double-period 
orbits for Re = Re2 = 28.41 . . . ; and so on along a birfurcation cascade that leads to 
chaos for Re > Re, = 28.73. 

The Lagrangian part (i.e. equation (1 b))  behaves as follows: when Re < Re, the 
motion is regular (either periodic or open depending on the initial conditions); when 
Re = Re, + E and E < E, = 0.7, chaotic layers appear around the separatrices (these 
latter are shown in figure l ) ,  but far from them the motion is still regular, as before; 
finally if E > E ,  the chaotic layers touch each other and the particle diffuses away 
independently of the initial position. We note that there are two kinds of separatrices: 
the isolated 'eights', labelled by A, and the periodic ones, labelled by B in figure 1. 
In [ l ]  we have shown that Lagrangian chaos has a connection with properties of the 
Eulerian field only when the Eulerian part (i.e. equation ( l a ) )  exhibits a Hopf 
bifurcation; the onset of Eulerian chaos has no influence on the Lagrangian properties. 

2 
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Figure 1. Structure of the separatrices for equation ( l b )  as given by the 5-modes truncated 
model of [2]. 

In this addendum we discuss diffusion for E > E,  (smaller values of E give rise to 
ballistic or limited motions, depending on the initial conditions, besides the diffusive 
ones). We study the behaviour of direction 1 and 2 diffusion coefficients, D,  and D2,  
on variation of &,and compare them with other quantities such as: mean quadratic 
particle velocity, u2,  maximum Lyapunov characteristic exponent, A [3]. Let us define 

1 1  
D -- l im-(x , ( t+r ) -x l ( t ) )2  ' - 2  T+m 7 

1 1  
2 r+m r D, = - lim - (x2( t + r )  -x2( t)) '  

- -  
v2  = IX( t )12 
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where z (  t )  is the tangent vector given by the linearised equation 

dui aui 
i i  = - z ,  +- z2 

ax,  8x2 
i = 1, 2 .  

The temporal mean (.) is taken over a very long time. - 
A natural question to put is what is the relation of D,  and D2 with A and U’; a 

hasty answer, based on dimensional arguments and analogy with the Brownian motion, 
is 

D1.2 - A. (7) 

The line of reasoning goes as follows. One assumes for the uncorrelation time that 
7,- 1 / A ;  then one has D,,,- L 2 / r ,  and therefore equation (7), assuming that L (the 
typical distance the particle runs along during the time 7,) does not depend on Re. 
We note that equation (7) has been observed to occur for the diffusion of charged 
particles in a turbulent plasma, which is a problem equivalent to plane hydrodynamics 

Let us now recall that the diffusion coefficient Di is related, via the Kubo formula, 
[41. 

to the velocity correlation function 
- 

Di = lom V i (  t + T ) U j (  t )  d7- U 2 7 d  (8) 

where Td is the typical time for the decay of the correlation, so that, making the likely 
choice 7d - 1 / A ,  one gets the other possibility 

- 
D1,, - v2/A. (9) 

We show the behaviour of D,, D,, A, 7 as functions of Re- Re, in figure 2. It is 
apparent that D1 initially decreases and then is nearly constant while E increases, but 
Dz is an increasing function of E. 

It seems that no simple relation (like equations (7) or (9)) exists between Di and 
A. We have that the above-mentioned statistical arguments are completely wrong even 
on a qualitative level. The main source of this strong disagreement is due to the fact 
that for E -0 (1 )  the autocorrelation function of i1 = U, decays on times very much 
larger than l / A .  We stress that the horizontal diffusion for E slightly larger than E,  is 
ruled by the intervals of regular motion. There is no likeness with the standard diffusion 
in the Brownian motion: our case resembles the random walk with a probability 
distribution for pausing times between successive steps in the walk [ 5 ] .  Roughly 
speaking, we have the following scenario: regular ballistic motion for a certain time 
interval (that on the average diverges as E goes to E, ) ,  entrapping inside a little region 
of disorderly motion, and then ballistic motion again (not necessarily in the same sense 
as the preceding one). 

In figure 3 examples of (xl, x2) as functions of time are shown. For E - E , ,  the 
intermittent behaviour is evident, as also is the difference with the standard random 
walk: long horizontal escapes, then entrappings, and so on. D1 seems to diverge when 
E approaches E ,  from above, D2 appears to go to zero. 

We have not been able to determine the exact value of E,  and the precise quantitative 
behaviour of the diffusion coefficients, because of the high computation time required; 
yet the data we obtain suggest an interpretation of the diffusion process (at least on 
qualitative grounds) in terms of unidimensional intermittent maps. For the horizontal 
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Figure 2. ( a )  Diffusion coefficients-D, (Dl) and lOD, ( x )  as functions of Re - R e , .  ( b )  
Mean quadratic particle velocity U* (x)  and maximum Lyapunov exponent A (0) as 
functions of Re - R e , .  

motion we have the analogy of an intermittent transition from ballistic motion ( E  < E,) 

to a diffusive one; for the motion along the vertical direction the analogy is with a 
map that makes a transition from a confined motion ( E  < E , )  to a diffusive one. For 
maps of the above-mentioned type we have [ 6 ] ,  respectively, D - ( E  - and 
D - ( E  - E , ) ~ ' ~ ,  in qualitative agreement with our results. The transition to chaos 
(tangent contact) of the one-dimensional maps, corresponds in our case to the touching 
of two chaotic layers of B type, that allows the vertical diffusion. Of course the analogy 
with the intermittent unidimensional maps cannot be pushed too far because they 
ought to be interacting. 

It is clear that the diffusion properties of this model are rather peculiar and some 
of them (e.g. divergent Dl) are dependent on the detailed structure of the separatrices, 
so that we cannot expect that the types of behaviour we met are generic for the 
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Figure 3. 5000 positions of a particle, driven by equations ( 1 )  with (a) Re - Re, = 1.3 and 
( b )  R e -  Re,  = 10.15, taken every second. 

Lagrangian two-dimensional motion. Nevertheless we stress how the high values of 
D, are basically due to the existence of coherent structures which have also been 
observed in less idealised models of two-dimensional fluids [7]. 

We conclude by confronting our results with those obtained in different contexts. 
In [4] Pettini et a1 find a behaviour fitting in with equation (7). In this case, however, 
the velocity field contains a high number of harmonics (-SOO), so it is not surprising 
that the diffusion coefficients change as in equation (7), in agreement with the predic- 
tions of the phenomenological theories and statistical approaches. On the other hand 
Kleva and Drake [SI study the model of [4] with few harmonics, and get a completely 
different result, even though D still grows with A. In our case D,  is more or less 
constant while A grows; sometimes it decreases, while D2 increases with A. 

By comparing our results with these models we may draw the following conclusion: 
perhaps with the exclusion of limiting cases (i.e. fully developed turbulence) the 
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diffusion coefficients are strongly dependent on the details (coherent structures) and 
cannot be guessed from statistical arguments. 

Finally we mention that the Lagrangian behaviour of Taylor vortices close to the 
onset of instability [9] also shows diffusion properties similar to ours. 
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